Муниципальное бюджетное образовательное учреждение «Италмасовская средняя общеобразовательная школа»

Принята на заседании Педагогического совета Протокол №7 от29.08.2024 Утверждена приказом №107/01-04 от 02.09.2024 Директор МБОУ «Италмасовская СОШ» Д.В. Морозов

Дополнительная общеобразовательная общеразвивающая программа «3D-моделирование в Blender»

технической направленности

возраст обучающихся: 11-15 лет

срок реализации: 1 год

Составитель: Яговкин Денис Михайлович педагог дополнительного образования

Италмас 2024

1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «3D-моделирование в Blender» разработана в соответствии с действующим законодательством, Уставом и локальными актами образовательного учреждения. Направленность: техническая.

Уровень освоения программы: ознакомительный.

В современном мире все больше набирает обороты популярность 3D-технологий, которые внедряются в различные сферы деятельности человека. Значительное внимание сегодня уделяется такой разновидности 3D-технологий как 3D-моделирование. Это прогрессивная отрасль мультимедиа, позволяющая осуществить процесс создания трехмерной модели при помощи специальных компьютерных программ. С помощью трехмерного графического чертежа и модели учащиеся могут разработать визуальный объемный образ желаемого объекта. 3D-технологии являются передовыми технологиями, заполняющими современную жизнь человека. Сейчас трудно представить работу дизайнера, проектировщика, мультипликатора без использования 3D-моделей, построенных с помощью компьютера. Еще более широкое распространение 3D-моделирование получило в связи распространением 3D-принтеров. 3D-модели используются во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности.

Дополнительная общеобразовательная общеразвивающая программа «3D-моделирование в Blender» нацелена на развитие и поддержку детей, проявивших интерес и определенные способности к 3D-моделированию, на формирование учащихся информационных, общекультурных, V коммуникативных познавательных, социально-трудовых И необходимых для дальнейшего формирования и развития компетентности в выбранной сфере информационных технологий, а также на возможность приобретения опыта при работе в графических средах. Данная программа является продолжением программы «3D-моделирование», при реализации которой учащиеся приобрели опыт в создании, редактировании и печати объемных моделей в программе инженерного моделирования OpenSCAD. Актуальность программы. Современная ситуация в стране предъявляет системе дополнительного образования детей социальный заказ на формирование творческой, целостной самодостаточной личности, обладающей широким кругозором, запасом необходимых ценностных ориентиров, без которых невозможно органичное существование человека в окружающем мире. В связи с этим программа направлена на овладение знаниями в области компьютерной трехмерной графики, которые повсеместно используются в сферах деятельности и становятся все более значимыми различных полноценного развития личности. Данный курс развивает творческое воображение, конструкторские и научно-технические компетенции школьников и нацеливает на осознанный выбор необходимых обществу профессий. Полученные в ходе обучения знания помогут обучающимся самостоятельно разрабатывать модели трехмерных объектов, создавать анимации, визуализировать сцены в программе Blender.

Отличительные особенности программы. Отличительная особенность программы заключается в ее практико-ориентированной направленности, позволяющей каждому обучающемуся воплотить свои творческие идеи и способствующей развитию предпрофессиональных навыков в области 3D-моделирования.

Новизна программы заключается в том, что программа реализуется впервые в МБОУ «Италмасовская СОШ».

Педагогическая целесообразность. На занятиях ребята шаг за шагом создают собственный проект. Программа «3D-моделирование в Blender» не только расширяет и углубляет полученные ранее умения и навыки в области трехмерного моделирования, но и дает знания, необходимые для серьезного моделирования объектов, создания освещения и спецэффектов с помощью профессионального программного обеспечения Blender.

Адресат программы: учащиеся 11–15 лет. В подростковом возрасте возрастает самостоятельность ребенка, значительно расширяется сфера его деятельности, формируется осознанное стремление применить свои возможности, проявить себя, более остро переживается необходимость кем-то стать. Личность не только формируется, но и самоутверждается в деятельности.

Преемственность программы с предметными программами школы или с программами других образовательных организаций: реализация программы «3D-моделирование в Blender» позволяет затронуть различные компоненты содержания из школьных предметов «информатика», «геометрия» и «труд (технология)», «черчение», «физика» такие как моделирование, программирование, прототипирование, симметрия, координаты и ряд других. Это способствует созданию и укреплению межпредметных связей и является основой для преемственности данной программы и предметных программ.

Планируемое количество учащихся: 20 человек (ограничение количества вызвано количеством оборудования в ОУ)

Практическая значимость для целевой группы/ Полученные в ходе обучения знания помогут обучающимся самостоятельно разрабатывать модели трехмерных объектов, создавать анимации, визуализировать сцены в программе Blender.

Сроки освоения программы: 1 годю Объем программы: 72 часа

Формы и особенности организации образовательного процесса: коллективные, групповые, индивидуальные. Формы проведения занятий подбираются с учетом цели и задач занятия, познавательных интересов, индивидуальных возможностей учащихся, специфики содержания образовательной программы.

Формы обучения: очная.

Режим занятий: занятия проводятся 1 раз в неделю по 2 часа. Продолжительность занятия - 45 минут.

Формы аттестации: выполнение и защита проектной работы

Цель программы «3D-моделирование в Blender»: формирование практических навыков создания моделей в среде 3D-моделирования Blender.

Задачи программы:

- 1. Сформировать умения и навыки работы в программе Blender;
- 2. Способствовать развитию интереса к изучению и практическому освоению 3D-моделирования в программе Blender;
- 3. Способствовать развитию интереса к техническим профессиям;
- 4. Способствовать развитию технического и проектного мышления.

2. Учебный план

No	Название разделов,	Количество часов			Формы
Π/Π	тем	Всего	Теория	Практика	контроля
	Инструктаж по	1	1		
	технике безопасности				
Вве	дение в трехмерную				
грас	рику				
1	Трехмерная графика				
	и технологии ее	3	3		
	создания				
2	Интерфейс Blender.	4	1	3	
	Перемещение и				
	изменение объекта	1.0			
3	Объекты в Blender	10	2	8	Практическая
					работа
	овы моделирования				
	ender				
4	Основные объекты и	4	1	2	
	их модификация	4	1	3	
5	Камера и источники	4	1	3	
	Света	2	0	2	
6 7	Окно свойств	<u>2</u> 4	0	3	
8	Рендеринг	4	<u>l</u> 1	3	
9	Meню Add		<u>l</u> 1	3	
	Меню Select	4 4	1	3	
10	Выделение элементов Mesh	4	1	3	
11	Работа с элементами	4	1	3	
11	Mesh	-т	1	5	
12	Модификаторы	4	1	3	Практическая
					работа
13	Объект Text	2	0	2	Практическая
					работа
Ma	гериалы и текстуры				
	ектов				
14	Создание и	6	1	5	
	настройка материала				

15	Наложение текстур	4	1	3	
Основы анимации					Практическая
16	Простейшая				работа
	анимация	4	1	3	
17	Итоговый проект	4	1	3	Проектная работа
	ОТОГИ	72	19	53	

3. Содержание программы

1. Трехмерная графика и технологии ее создания

Теория: Области применения трехмерной графики и ее назначение. Демонстрация возможностей трехмерной графики. Программные продукты для создания трехмерной графики. Техника безопасности.

2. Интерфейс Blender. Перемещение и изменение объекта

Теория: Элементы интерфейса Blender. Типы окон. Навигация в 3D-пространстве. Создание объектов и работа с ними. Основные функции. Выделение, перемещение, вращение и масштабирование объектов. Примитивы. Проекции.

Практика: Изучение и настройка интерфейса Blender. Отработка навыка навигации в трехмерном пространстве. Создание объектов. Отработка навыка выделения, перемещения, вращения и масштабирования объектов.

3. Объекты в Blender

Теория: Типы объектов. Цифровой диалог. Копирование и группировка объектов. Булевы операции.

Практика: Выполнение базовых манипуляций с объектами. Манипулирование объектами сцены. Выполнение практической работы по инструкционной карте.

4. Основные объекты и их модификация

Теория: Основы полигонального моделирования. Управление элементами объекта. Горячие клавиши и их использование. Основные объекты и их модификации. Режим редактирования. Сглаживание. Инструмент пропорционального редактирования.

Практика: Использование в сцене основных примитивов. Редактирование примитивов в сцене. Применение основных инструментов редактирования.

5. Камера и источники света.

Теория: Источники света. Типы источников света. Теневой фильтр. Объемное освещение. Параметры настройки освещения. Опции и настройки камеры.

Практика: Выставление и редактирование источников света. Настройка параметров освещения. Настройка камеры.

6. Окно свойств

Практика: Работа с окном свойств объектов.

7. Рендеринг

Теория: Рендеринг. Система рендеринга в Blender. Базовые настройки рендера.

Практика: Настройка рендеринга в Blender. Выбор движка рендеринга. Материалы и свет.

8. Меню Add

Теория: Меню добавления объектов в сцену. Параметры объектов.

Практика: Размещение объектов на сцене. Настройка параметров объектов с помощью меню.

9. Меню Select

Теория: Меню выделения объектов. Выделение по шаблону. Маски выделения. Инверсия выделения. Типы выделения.

Практика: Выделение объектов по шаблону и по маске. Отработка навыка выделения объектов.

10. Выделение элементов Mesh

Теория: Меsh-объекты. Режимы выделения. Выделение вершин, ребер, граней. Переключение режимов выбора. Инструменты выделения.

Практика: Отработка навыков выделения элементов полисетки.

11. Работа с элементами Mesh

Теория: Перемещение, вращение, масштабирование, отражение, сдвиг.

Практика: Работа с элементами полисетки. Редактирование примитивов.

12. Модификаторы.

Теория: Модификаторы. Использование модификаторов. Группа вершин. Текстура. Создание, редактирование, деформирование.

Практика: Применение модификаторов для преобразования простого объекта. Выполнение практической работы по инструкционной карте.

13. Объект Text.

Практика: Моделирование текста. Настройки размещение текста на объекте. Выполнение практической работы по инструкционной карте.

14. Создание и настройка материала

Теория: Общие сведения о текстурировании в трехмерной графике. Диффузия. Зеркальное отражение. Материалы в практике.

Практика: Создание и настройка материала.

15. Наложение текстур

Теория: Рамповые шейдеры, многочисленные материалы. Специальные материалы.

Практика: Управление цветом и отражением. Наложение текстур.

16. Простейшая анимация

Теория: Общие сведения о трехмерной анимации. Модуль IPO. Анимация методом ключевых кадров.

Практика: Простое управление с Timeline. Настройка анимации. Анимация группы объектов. Выполнение практической работы по инструкционной карте.

17. Итоговый проект.

Теория: Обсуждение проекта. Комментарии к выполнению задания.

Практика: Выполнение творческого проекта по трехмерному моделированию и печати по согласованию с учителем.

4. Планируемые результаты 1 года обучения

К концу освоения программы у учащихся должны быть сформированы следующие результаты:

Личностные:

- формирование умения работать индивидуально, в малой группе и участвовать в коллективном проекте;
- развитие умения проявлять творческие навыки и инициативу при разработке проекта;
- развитие умения взаимодействовать с другими учащимися вне зависимости от национальности, интеллектуальных и творческих способностей;
- формирование способности к саморазвитию и самообразованию средствами информационных технологий на основе приобретённой мотивации к обучению и познанию;
- формирование сознательного отношения к выбору будущей профессии;

Метапредметные:

- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности;
- умение самостоятельно планировать пути достижения целей, выбирать эффективные способы решения учебных и познавательных задач;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;
- умение вносить коррективы в действия в случае расхождения результата задачи с ранее поставленной целью;
- умение создавать, применять и преобразовывать графические объекты для решения учебных и творческих задач;
- умение осознанно использовать речевые средства в соответствии с задачей коммуникации;

Предметные:

- развитие умение использовать терминологию трехмерного моделирования;
- приобретение навыков работы в среде 3D-моделирования Blender и применение их при реализации исследовательских и творческих проектов;
- умение создавать, применять и преобразовывать графические объекты для решения учебных и творческих задач;
- умение планировать этапы работы для достижений цели моделирования.

5. Условия реализации программы

Учебно-методическое обеспечение:

Для эффективной реализации программы педагогом планируется разработка, составление методической литературы:

1) Конспекты теоретических и практических занятий;

2) Методические папки по темам.

Информационное обеспечение:

- 1) Курс 3D-моделирования для школьников в Blender (URL: http://surl.li/acgpnj)
- 2) Уроки Blender для начинающих (URL: http://surl.li/dfalbs)
- 3) Уроки по Blender (URL: https://natalia.aclas.ru/wp-content/uploads/2023/12/Blender-1-15.pdf)

Кадровое обеспечение:

1) Занятие ведет педагог, имеющий навыки работы с системой 3D-моделирования Blender.

Техническое обеспечение:

- 1) Кабинет информатики;
- 2) Персональный компьютер с операционной системой Linux;
- 3) Программное обеспечение Blender версии 4;
- 3D-принтер;
- 5) Пластик PLA для 3D-принтера;
- 6) Проектор;
- 7) Экран.

6. Календарный учебный график дополнительной общеобразовательной общеразвивающей программы «3D-моделирование в Blender»

Месяц	Ι	Год обучения, форма занятия			
	$N_{\underline{0}}$	1 год обучения			
	недели	Теория	Практика	Контроль	
		(T)	Π	(K)	
Сентябрь	1	T			
	2	T			
	3		П		
	4	T			
Октябрь	5	T			
	6		П		
	7		П		
	8		П		
Ноябрь	9		П		
	10			К	
	11	T			

	1	1	1	, ,
	12		П	
Декабрь	13	T		
	14		П	
	15		П	
	16	T		
Январь	17		П	
	18	T		
	19		П	
	20	T		
Февраль	21		П	
	22	T		
	23		П	
	24	T		
Март	25		П	
	26	T		
	27			К
	28			К
Апрель	29	T		
_	30		П	
	31	T		
	32		П	
Май	33	T		
	34		П	
	35	T		
	36			К
ИТОГО		19	53(из них	4 контроль)
	•	•	•	

7. Методическое обеспечение

No	Наименован	Обеспечение	Рекомендаци	Дидактический и
	ие разделов	программы	и по	лекционные материалы
Π /	тем	методическими	проведению	
П		видами	лабораторны	
		продукции	ΧИ	
			практически	
			х работ	
1	Введение в	Шапошникова С.	Интерфейс	Знакомство с интерфейсом
	трехмерную	Введение в	Blender	Blender [Электронный
	графику	Blender	[Электронны	pecypc] // URL:
		[Электронный	й ресурс] //	https://youtu.be/5BdAp40Ta
		pecypc] //	https://disk.ya	zg?si=fMWQB8frOAYNsz5
		https://younglinux.	ndex.ru/i/E4K	<u>6</u>
		info/blender/course	7taKX1qGAv	
			g	

2	Основы	Терехов М. В.	Трансформац	Создание 3D-модели
	моделирова	Технология	ии	[Электронный ресурс] //
	ния в	трехмерного	[Электронны	https://youtu.be/B3ln5TaTX
	Blender	моделирования в	й ресурс]//	e4?si=7ThPyCX8wCAzpeZ
		Blender 3D:	https://disk.ya	G
		учеб. пособие /	ndex.ru/i/mUJ	
		М. В. Терехов, А.	yaZIoV75V3	[Электронный ресурс] //
		А. Гладченков, А.	g	https://youtu.be/cdfy3KKvH
		В. Кузьменко, А.		3I?si=FaRzW3IzFaZyuX4t
		Π .	Работа с	Сцена в Blender
		Сазонова, Е. Н.	объектами	[Электронный ресурс] //
		Леонов, Е. В. Рак,	[Электронны	https://youtu.be/oNkBSIVdu
		Л. А. Филиппова.	й ресурс]//	Go?si=dxYCCLDE5gfW7_
		– Москва:	https://disk.ya	We
		ФЛИНТА, 2018.	ndex.ru/i/aiGz	Oсвещение в Blender
		Шапошникова С.	CdJmIdtKGA	[Электронный ресурс] //
		Введение в		https://youtu.be/IosRbJ8vYIs
		Blender	Mesh-	?si=Abdtsv7E0mFg2vGO
		[Электронный	объекты	
		pecypc] //	[Электронны	
		https://younglinux.	й ресурс]//	
		info/blender/course	https://disk.ya	
			ndex.ru/i/gzx	
			GXBqyG-	
			bxQw	
3	Материалы	Большаков В.П.	Материалы	Текстурирование в Blender
	и текстуры	Основы 3D-	[Электронны	[Электронный ресурс] //
	объектов	моделирования /	й ресурс] //	https://youtu.be/XNvZh9oo
		В.П. Большаков,	https://disk.ya	DDo?si=hSlS9K7bsHK4im
		А.Л.	ndex.ru/i/mD	<u>A7</u>
		Бочков СПб.:	5Mx0ulFLgr0	
		Питер, 2013.	g	
		Шапошникова С.		
		Введение в	Текстуры	
		Blender	[Электронны	
		[Электронный	й ресурс] //	
		pecypc] //	https://disk.ya	
		https://younglinux.	ndex.ru/i/fSj8	
		info/blender/course	b2ymh2xaIQ	
4	Основы	Шапошникова С.	Введение в	Анимация в Blender
	анимации	Введение в	анимацию	[Электронный ресурс] //
		Blender	Blender	https://youtu.be/JndnOVwQ
		[Электронный	[Электронны	P9c?si=lWqLRFLg5h37Ftr
		pecypc] //	й ресурс] //	<u>m</u>
		https://younglinux.	https://disk.ya	

	info/blender/course	ndex.ru/i/8LK	
		u9T9WPX1o	
		<u>ow</u>	

8. Рабочая программа воспитания

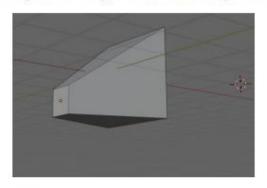
1. Цель, задачи и результат воспитательной работы

Цель: Создание условий для формирования социально-активной, творческой, нравственно и физически здоровой личности обучающегося, способной на сознательный выбор жизненной позиции, а также к духовному и физическому самосовершенствованию, саморазвитию в социуме. Задачи:

- 1. Способствовать развитию личности, способной формировать собственное мировоззрение и систему базовых ценностей.
- 2. Сформировать умение самостоятельно оценивать происходящее и использовать накапливаемый опыт в целях самосовершенствования и самореализации в процессе жизнедеятельности обучающихся.
- 3. Развивать систему отношений в коллективе через разнообразные формы активной социальной деятельности.

Основные формы воспитательной работы по вышеизложенным направлениям:

- конкурсы, соревнования;
- родительские собрания;
- тематические занятия, акции;
- беседы, дискуссии;
- просмотр обучающих видеофильмов

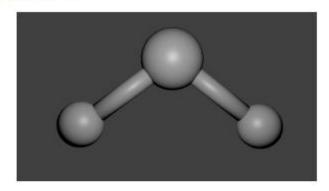

№ п/п	Форма и название мероприятия	Сроки			
		проведения			
		(указать			
		месяц)			
Направление 1 учащихся	1. Социализация, самоопределение и профессиональная с	ориентация			
1.1	«Профессия графический дизайнер » Интерактивное	май			
	занятие				
Направление 2	2. Формирование культуры здорового и безопасного обра	за жизни и			
комплексной г	трофилактической работы				
2.1	Проведение инструктажей по ПБ, ТБ в здании, на	сентябрь			
	занятиях				
Направление 3. Интеллектуально-познавательное					
3.1	Участие в олимпиадах, конкурсах	ноябрь			
Направление 4. Художественно-эстетическое					
	Выступление на школьном отчётном концерте кружков	апрель			
	дополнительного образования				

9. Контрольно-измерительные (оценочные) материалы

Практическая работа «Объекты в Blender»

Часть 1.

Сделайте из куба фигуру подобную представленной ниже. Переместите центр масс на меньшую грань. В объектном режиме покрутите объект как трекбол (двойное нажатие R).



Инструкционная карта

- 1. Переключимся в режим правки Таb . Сбросим выделение Alt + A.
- 2. В заголовке редактора выберем режим выделения ребер (edge select).
- 3. Выделим одну из верхних ребер, кликнув по ней левой кнопкой мыши.
- 4. Переместим (G) ее вниз по оси Z.
- 5. Выберем режим выделения граней (face select).
- Выделим грань, смежную с ранее опущенным ребром. Эта грань меньше всех остальных.
- Уменьшим (S) грань с боков. В зависимости от того, с какой стороны грань, уменьшать надо либо по оси X, либо Y.
- 8. Переключимся в объектный режим.
- С помощью нумпада установим вид так, чтобы на нас смотрела меньшая грань.
 Скорее всего это будет вид либо спереди (1), либо справа (3).
- 10. Выберем инструмент Cursor (Shift + Пробел, затем Пробел).
- 11. Установим курсор в центр меньшей грани.
- 12. Для точного позиционирования привяжем его к сетке (Shift + S → Cursor to Grid | Курсор к сетке). Перед этим следует увеличить масштаб, например, покрутив колесо мыши. Должна появиться более мелкая сетка.
- 13. Кликнем правой кнопкой мыши и выберем Set Origin → Origin to 3D Cursor | Установить ориджин → Ориджин к 3D-курсору. Объект при этом должен быть выделен.
- 14. Переключимся на вид из камеры, нажмем 2 раза R и отметим, что объект вращается вокруг меньшей грани.

Часть 2

Создайте модель молекулы воды.

Угол между связями равен 104.5 градусов. Комбинация клавиш Shift + D выполняет дублирование объектов.

Инструкционная карта

- 1. Удалите со сцены куб (X или Delete).
- 2. Нажмите Shift + A и добавьте меш Cylinder | Цилиндр.
- 3. Сразу в регионе последней операции, установите **Radius | Радиус** в 0.3, а **Depth | Глубина** в 3.
- 4. Переключитесь на ортогональный вид справа (3).
- Нажмите Shift + D, затем Enter. Будет создана копия цилиндра. Она находится в том же месте, что исходный.
- 6. Откройте панель свойств (N). Измените значение вращения (rotation) по оси X на 104.5.
- 7. Нажмите G и сместите вверх выделенный цилиндр так, чтобы его левый конец слегка касался верхнего конца первого цилиндра. Должно получиться подобие буквы Г.
- 8. Переключитесь на инструмент курсора (Shift + Пробел, затем Пробел).
- Установите 3D-курсор в месте соприкосновения цилиндров. Для точного позиционирования возможно придется переключаться между видами. Снова вернитесь на вид справа (3).
- Нажмите Shift + А и добавьте UV-сферу.
- Продублируйте ее (Shift + D), затем, перемещая мышь, поместите вторую сферу на другой конец одного из цилиндров.
- 12. Немного уменьшите вторую сферу (S).
- 13. Продублируйте эту сферу, копию переместите на конец другого цилиндра.
- 14. Переключитесь на инструмент выделения (Shift + Пробел, затем В).

- 15. Выделите все элементы модели так, чтобы большая центральная сфера была выделена последней. Выделение выполняется при зажатом Shift.
- 16. Нажмите Ctrl + J. Произойдет объединение объектов в единый меш. Его точка центра масс будет находиться в том объекте, который был выделен последним.
- 17. Переключитесь на вид из камеры. Произвольно уменьшите молекулу и поверните ее примерно на -52 градуса по оси X ($R \rightarrow X \rightarrow -52$) и -45 градусов по оси Z ($R \rightarrow Z \rightarrow -45$).
- 18. Выполните сглаживание (клик правой кнопкой мыши, выбрать в контекстном меню Shade Smooth | Гладкое затенение).

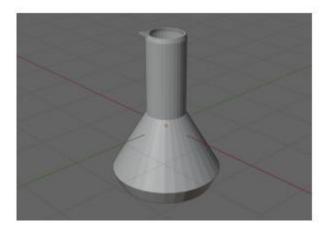
Критерии оценки:

Высокий уровень:

- все шаги выполнения практической работы пройдены самостоятельно;
- модель построена полностью и без ошибок;
- камера и источники света правильно размещены;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик уверенно ориентируется в инструментах редактора;
- ученик уверенно осуществляет работу с «горячими клавишами» редактора;
- ученик проявил творческий подход к созданию модели.

Средний уровень:

- работа выполнена с незначительной помощью педагога;
- модель построена не полностью или содержит 2–3 незначительные ошибки;
- при размещении камеры и/или источников света ученик прибегал к помощи педагога;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик ориентируется в инструментах редактора, изредка прибегая к справочному материалу;
- ученик осуществляет работу с «горячими клавишами» редактора, пользуясь справочным материалом;


Низкий уровень:

- работа выполнена при помощи педагога;
- модель построена менее чем на 50% или содержит значительные ошибки;
- файлы работы сохранены при помощи педагога;
- ученик постоянно обращается к справочным материалам при работе с интерфейсом редактора;
- ученик не пользуется «горячими клавишами».

Практическая работа «Модификаторы»

Создайте модель полой внутри колбы.

Подсказка. Сначала объединяются конус и цилиндр. Затем создается их копия, которая уменьшается. Полость внутри колбы получается путем вычитания из большего объекта меньшего.

Инструкционная карта

- 1. Удалите куб, добавьте конус и цилиндр.
- 2. Переключитесь на вид спереди ($\mathbf{1}$). Уменьшите цилиндр по всем осям, затем вытяните по оси Z и установите так, чтобы получился прототип колбы.
- 3. Выделите конус и добавьте для него модификатор **Boolean** | **Логический**. Выберите вариант **Union** | **Объединение**, в поле **Објест** | **Объект** укажите цилиндр. **Примените** изменения.
- 4. Выделите цилиндр и удалите. Поскольку его не видно за колбой, сделайте это через редактор **Outliner** | **Структура проекта**.
- Переключитесь на вид каркаса (Z → 4).
- 6. Выделите объект и продублируйте его на месте (Shift + D \rightarrow Enter).
- Не снимая выделения, откройте регион свойств (N). Установите размер (Scale | Масштаб) по всем осям в 0.9.
- 8. Перейдите в режим редактирования, сбросьте выделение (Alt + A).
- Растянув рамку, выделите все верхние вершины. Поднимите (G) их по оси Z так, чтобы они выходили за верхнюю границу внешней колбы.
- Вернитесь в объектный режим. Выделите внешнюю колбу и снова добавьте для нее модификатор Boolean.
- 11. В качестве операции выберите **Difference** | **Разница**, объектом-модификатором укажите внутреннюю колбу.

- 12. Нажмите Арріу | Применить, после чего удалите меньшую колбу.
- 13. Вернитесь в режим отображения Solid | Сплошной ($Z \rightarrow 6$) и вид из камеры (0). Убедитесь, что колба теперь полая внутри.
- 14. Выделите колбу и переключитесь в режим редактирования. Сбросьте выделение.
- 15. Вид снизу (Ctrl + 7). Переключитесь на выделение граней и выделите дно колбы.
- Вернитесь на вид спереди (1). Немного выдавите (Е) дно вниз и слегка уменьшите его.
- Переключитесь на вид сверху (7). Увеличьте масштаб и выделите две грани, которые формируют верхнюю каемку колбы. Они выглядят как дуги окружности.
- 18. Вернитесь на вид спереди, уменьшите масштаб. Немного выдавите выделенные грани вверх и слегка уменьшите.
- Снова переключитесь на вид сверху и увеличьте масштаб. Включите выделение вершин.
- 20. Выделите слева три внешние вершины дуг-каемок колбы и соответствующие им три внутренние. Сместите ($_{\mathbf{G}}$) их точно по оси X наружу. Должен получиться носик колбы.
- 21. Переключитесь на объектный режим и вид из камеры.
- 22. Поверните колбу на 45 градусов (R , затем Z , затем 45 и Enter).

Критерии оценки:

Высокий уровень:

- все шаги выполнения практической работы пройдены самостоятельно;
- модель построена полностью и без ошибок;
- камера и источники света правильно размещены;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик уверенно ориентируется в инструментах редактора;
- ученик уверенно осуществляет работу с «горячими клавишами» редактора;
- ученик проявил творческий подход к созданию модели.

Средний уровень:

- работа выполнена с незначительной помощью педагога;
- модель построена не полностью или содержит 2–3 незначительные ошибки;
- при размещении камеры и/или источников света ученик прибегал к помощи педагога;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик ориентируется в инструментах редактора, изредка прибегая к справочному материалу;
- ученик осуществляет работу с «горячими клавишами» редактора, пользуясь справочным материалом;

Низкий уровень:

• работа выполнена при помощи педагога;

- модель построена менее чем на 50% или содержит значительные ошибки;
- файлы работы сохранены при помощи педагога;
- ученик постоянно обращается к справочным материалам при работе с интерфейсом редактора;
- ученик не пользуется «горячими клавишами».

Практическая работа «Объект Text»

Добавьте на сцену текстовый объект, добавьте для него материал (измените цвет), небольшой объем и фаску. Создайте анимацию быстрого появления текста сверху или слева в области видимости камеры, его задержки здесь и последующего быстрого перемещения вниз или вправо за пределы видимости камеры.

Часть І. Настройка свойств текстового объекта

- 1. Добавьте на сцену текст: Add → Text | Добавить → Текст.
- 2. В редакторе Properties | Свойства откройте вкладку Data.
- 3. Здесь на панели **Geometry** | **Геометрия** установите значение экструзии (*extrude*) в 0.03 единицы, значение глубины (*depth*) в 0.01.
- Перейдите на вкладку настройки материалов редактора свойств. Добавьте новый материал, поменяйте основной цвет (base color) поверхности. Переключитесь в режим предпросмотра материала: Z → 2.

Часть II. Установка исходного положения объекта

- 5. В редакторе 3D Viewport выделите камеру и откройте боковой регион (\mathbb{N}). Отметьте, что камера повернута по оси X примерно на 63.6 градусов, по оси Z на 46.7.
- 6. Выделите текстовый объект. Поверните его по оси Z на такую же величину, как у камеры, а по оси X на меньшее значение, чем таковое у камеры. Например, на 50 градусов. В результате текст будет немного наклонен назад при виде из камеры.
- Переключитесь на вид из камеры и переместите (G) текст за пределы ее видимости, например, вверх.

Часть III. Анимация перемещения текста

- 8. С помощью редактора **Timeline | Временная шкала** убедитесь, что текущим является первый кадр.
- 9. В редакторе 3D Viewport нажмите К и выберите ключ Location | Положение.
- 10. На временной шкале сделайте текущим 10-й кадр.
- 11. Переместите текстовый объект в область видимости камеры.
- 12. Зафиксируйте изменения, создав еще один ключевой кадр положения (п. 9).
- Перейдите в 40-й кадр. Не перемещая объект, добавьте ключевой кадр. Таким образом с 10-го по 40-й кадр текст будет стоять на месте.
- Перейдите в 50-й кадр и уберите текст за пределы видимости камеры. Создайте ключевой кадр.
- 15. Ограничьте длительность анимации пятидесятью кадрами. Посмотрите ее (Пробел).

Критерии оценки:

Высокий уровень:

- все шаги выполнения практической работы пройдены самостоятельно;
- модель построена полностью и без ошибок;
- камера и источники света правильно размещены;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик уверенно ориентируется в инструментах редактора;
- ученик уверенно осуществляет работу с «горячими клавишами» редактора;
- ученик проявил творческий подход к созданию модели.

Средний уровень:

- работа выполнена с незначительной помощью педагога;
- модель построена не полностью или содержит 2–3 незначительные ошибки;
- при размещении камеры и/или источников света ученик прибегал к помощи педагога;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик ориентируется в инструментах редактора, изредка прибегая к справочному материалу;
- ученик осуществляет работу с «горячими клавишами» редактора, пользуясь справочным материалом;

Низкий уровень:

- работа выполнена при помощи педагога;
- модель построена менее чем на 50% или содержит значительные ошибки;
- файлы работы сохранены при помощи педагога;
- ученик постоянно обращается к справочным материалам при работе с интерфейсом редактора;
- ученик не пользуется «горячими клавишами».

Практическая работа «Простейшая анимация»

Пусть будет куб, на который камера смотрит сверху. С этой точки зрения он будет казаться квадратной плоскостью. Куб приближается к камере, потом начинает поворачиваться двумя разными цветными гранями, из-за чего становится очевидно, что это куб, а не плоскость. После этого куб медленно исчезает.

Инструкционная карта

Назначим любым двум, но не верхней, граням куба отдельные материалы другого цвета. Для этого у куба должно быть три материала. Первый – основной цвет. Материалы отдельным граням назначаются в режиме редактирования с помощью кнопки Assign | Назначить (см. урок 13).

Выделим камеру, откроем боковой регион (N) редактора 3D Viewport и установим для всех полей положения (кроме Z) и вращения значение 0. Затем поднимем камеру вверх на 15 единиц (Location Z | Положение Z = 15). Переключимся на вид из камеры (0).

Пусть анимация длится 100 кадров. Введем это значение в поле **End | Конец** редактора Timeline. Двигаться будет будет только куб, не камера. Выделим куб.

- 1. Находясь в текущем первом кадре, создадим ключевой кадр, нажав **к** в 3D Viewport и выбрав ключ **Location** | **Положение**.
- Сделаем текущим 20-й кадр. Приблизим куб к камере (G → Z) и только после этого создадим еще один ключевой кадр Location.
- 3. Перейдем в 30-й кадр и создадим ключ Rotation | Вращение.
- Перейдем в 40-й кадр. Повернем куб так, чтобы перед камерой оказалась одна из его цветных граней. После этого создадим еще один ключ Rotation. Для точного позиционирования можно использовать боковой регион.
- 5. Перейдем в 50-й кадр и создадим ключ Rotation.
- 6. Перейдем в 60-й кадр. Повернем куб так, чтобы перед камерой оказалась другая его цветная грань. Создадим ключ **Rotation**.
- 7. Перейдем в 70-й кадр и создадим ключ Scale | Масштаб.
- Перейдем в 100-й кадр, уменьшим размеры куба до нуля (X, Y, Z scale = 0), создадим ключ Scale.

Критерии оценки:

Высокий уровень:

- все шаги выполнения практической работы пройдены самостоятельно;
- модель построена полностью и без ошибок;
- камера и источники света правильно размещены;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик уверенно ориентируется в инструментах редактора;
- ученик уверенно осуществляет работу с «горячими клавишами» редактора;
- ученик проявил творческий подход к созданию модели.

Средний уровень:

- работа выполнена с незначительной помощью педагога;
- модель построена не полностью или содержит 2–3 незначительные ошибки;

- при размещении камеры и/или источников света ученик прибегал к помощи педагога;
- работа сохранена в файле проекта и в виде графического файла формата png;
- ученик ориентируется в инструментах редактора, изредка прибегая к справочному материалу;
- ученик осуществляет работу с «горячими клавишами» редактора, пользуясь справочным материалом;

Низкий уровень:

- работа выполнена при помощи педагога;
- модель построена менее чем на 50% или содержит значительные ошибки;
- файлы работы сохранены при помощи педагога;
- ученик постоянно обращается к справочным материалам при работе с интерфейсом редактора;
- ученик не пользуется «горячими клавишами».

Проектная работа

Темы проектных работ:

- Создание модели «Смартфон»
- Создание модели «Герой игры (мультфильма)»
- Создание модели «Пончик»
- Создание модели «Чашка»
- Создание модели «Игральный кубик»
- Создание анимации в Blender

Критерии оценки:

Высокий уровень:

- модель построена полностью самостоятельно и не содержит ошибок;
- самостоятельно осуществлены рендеринг, настройка источников света и камер, кадрирование;
- ученик проявил творческий подход к созданию модели;
- выполнено сохранение работы в виде файла проекта, графического изображения и файла для осуществления 3D-печати (STL);
- ученик уверенно работает с интерфейсом редактора, пользуется «горячими клавишами»;
- при защите проектной работы ученик способен полностью пояснить этапы работы над моделью, цель создания модели, объяснить ее практическую значимость, ответить на вопросы по работе.

Средний уровень:

- модель построена самостоятельно с помощью педагога/руководств в сети или содержит 2–3 ошибки;
- рендеринг, настройка источников света и камер, кадрирование осуществляются с помощью педагога или других учащихся;
- выполнено сохранение работы в одном или двух форматах (файл проекта, графический файл или файл для осуществления 3D-печати);
- работа с интерфейсом программы и «горячими клавишами» осуществляется с посторонней помощью;
- при защите проектной работы ученик затрудняется пояснить некоторые этапы работы над моделью, способен объяснить ее практическую значимость, неуверенно отвечает на вопросы по работе.

Низкий уровень:

- модель построена полностью по выбранной методической разработке;
- рендеринг, настройка источников света и кадрирование осуществлены при помощи педагога;
- модель не доведена до завершения или содержит грубые ошибки;
- сохранение файлов работы требует посторонней помощи;
- работа с интерфейсом программы осуществляется с посторонней помощью, при работе не используются «горячие клавиши»; при защите проектной работы ученик затрудняется пояснить некоторые этапы работы над моделью и ее практическую значимость, не может ответить на вопросы.

10.Список литературы

Основная литература:

1. Шапошникова С. Введение в Blender [Электронный ресурс] // Лаборатория линуксоида. URL: https://younglinux.info/blender/course (дата обращения 05.08.2024)

Дополнительная литература:

- 1. Справочное руководство Blender 4.2 // Blender 4.2 Manual. URL: https://docs.blender.org/manual/ru/4.2/ (дата обращения 06.08.2024)
- 2. Терехов М. В. Технология трехмерного моделирования в Blender 3D: учеб. пособие / М. В. Терехов, А. А. Гладченков, А. В. Кузьменко, А. П. Сазонова, Е. Н. Леонов, Е. В. Рак, Л. А. Филиппова. М: ФЛИНТА, 2018.
- 3. Большаков В.П. Основы 3D-моделирования / В.П. Большаков, А.Л. Бочков. СПб.: Питер, 2013.
- 4. Шапошникова С. Введение в Blender [Электронный ресурс] // Лаборатория линуксоида. URL: https://younglinux.info/blender/course (дата обращения 05.08.2024)